
Draft version March 21, 2023
Typeset using LATEX default style in AASTeX631

Nonlinear Damping and Field-Aligned Flows of Propagating Shear Alfvén Waves with Braginskii

Viscosity

Alexander J. B. Russell1

1 School of Science and Engineering,

University of Dundee,

Dundee, DD1 4HN, Scotland, UK

ABSTRACT

Braginskii MHD provides a more accurate description of many plasma environments than classical

MHD since it actively treats the stress tensor using a closure derived from physical principles. Stress

tensor effects nonetheless remain relatively unexplored for solar MHD phenomena, especially in nonlin-

ear regimes. This paper analytically examines nonlinear damping and longitudinal flows of propagating

shear Alfvén waves. Most previous studies of MHD waves in Braginskii MHD considered the strict

linear limit of vanishing wave perturbations. We show that those former linear results only apply to

Alfvén wave amplitudes in the corona that are so small as to be of little interest, typically a wave

energy less than 10−11 times the energy of the background magnetic field. For observed wave ampli-

tudes, the Braginskii viscous dissipation of coronal Alfvén waves is nonlinear and a factor around 109

stronger than predicted by the linear theory. Furthermore, the dominant damping occurs through the

parallel viscosity coefficient η0, rather than the perpendicular viscosity coefficient η2 in the linearized

solution. This paper develops the nonlinear theory, showing that the wave energy density decays with

an envelope (1+z/Ld)
−1. The damping length Ld exhibits an optimal damping solution, beyond which

greater viscosity leads to lower dissipation as the viscous forces self-organise the longitudinal flow to

suppress damping. Although the nonlinear damping greatly exceeds the linear damping, it remains

negligible for many coronal applications.

Keywords: Alfvén waves (23), Solar corona (1483), Solar coronal heating (1989), Solar coronal holes

(1484), Solar wind (1534), Magnetohydrodynamics (1964), Space plasmas (1544), Plasma

astrophysics (1261), Plasma physics (2089)

1. INTRODUCTION

Alfvénic waves are a ubiquitous feature of natural plasmas, including the solar corona (Tomczyk et al. 2007; De

Pontieu et al. 2007; Lin et al. 2007; Okamoto et al. 2007) and solar wind (Coleman 1967; Belcher & Davis 1971).

In solar physics, these waves contain sufficient energy to heat the open corona and accelerate the fast solar wind

(McIntosh et al. 2011), and they damp significantly within a solar radius above the surface (Bemporad & Abbo 2012;

Hahn et al. 2012; Hahn & Savin 2013; Hahn et al. 2022). How these Alfvénic waves damp in astrophysical and space

plasmas is an important question that has remained open for almost a century (see early papers by Alfvén 1947 and

Osterbrock 1961; modern reviews by De Moortel & Browning 2015, Arregui 2015 and Van Doorsselaere et al. 2020;

and historical perspectives by Russell 2018 and De Moortel et al. 2020).

Most theoretical knowledge about solar Alfvénic waves is based on “classical” magnetohydrodynamics (MHD), a

mathematical framework that originated from intuitive coupling of Maxwell’s equations and Euler equations of inviscid

hydrodynamics (Hartmann 1937; Alfvén 1942, 1943, 1950; Batchelor 1950) and became widely adopted in large part

due to its success providing insight into diverse natural phenomena (see e.g. Priest 2014). However, classical MHD is
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Figure 1. Schematic paths of reasoning. The vertical branch gives priority to smallness of the wave amplitude and concludes
that damping is a linear process governed by the perpendicular viscosity coefficient η2, e.g. § 8 of Braginskii (1965). The
horizontal branch gives priority to the smallness of η2/η0, leading to nonlinear damping via η0. This paper follows the diagonal
branch, which includes deriving the validity condition for the two outcomes. Nonlinear damping via η0 is appropriate for most
coronal applications.

one member of a larger family of plasma descriptions, some of which offer a more complete description of the plasma.

This paper analytically examines Alfvén wave damping in the more general framework of Braginskii MHD, which

unlike classical MHD, retains the anisotropic viscous stress tensor.

A number of authors, including § 8 of Braginskii (1965), have previously investigated viscous damping of Alfvén waves

in the linear limit of vanishingly small wave amplitude. When priority is given to smallness of the wave amplitude,

the problem becomes framed as a matter of how anisotropic viscosity affects velocities that are perpendicular to the

magnetic field (the direction of which is treated as unchanging). With this approximation, damping is determined by

the “perpendicular” viscosity coefficient η2, which is extremely small in the corona. It was thus originally concluded

that viscous damping is very weak for coronal Alfvén waves unless they have very short wavelengths. This path of

reasoning is shown as the vertical branch in Fig. 1.

There is, however, another way to view the problem. Viscous damping of Alfvén waves can alternatively be considered

with priority given to the largeness of parallel viscosity coefficient η0. Given that η2/η0 & 10−11 is typical in the corona

(Hollweg 1985), even a very small component of v parallel to the total magnetic field B would be expected to produce

major departures from linear theory. This path of reasoning is shown as the horizontal branch in Fig. 1.

The second viewpoint of the problem takes impetus from the observation that (unless wave amplitudes vanish

entirely) Alfvén waves do have a non-zero velocity component parallel to the total magnetic field. Two effects contribute

to this, which are separated if one expands V ·B = V · (b + B0), where B0 is the equilibrium magnetic field and b is

the magnetic perturbation. First, V · b is non-zero for an Alfvén wave, since the velocity perturbation perpendicular

to B0 is aligned with the magnetic field perturbation b. In other words, deflection of the magnetic field from its

equilibrium direction implies there is a non-zero velocity component parallel to the total magnetic field. Second, in

compressible plasma, the magnetic pressure of the magnetic field perturbation drives a nonlinear ponderomotive flow

parallel to the equilibrium magnetic field (e.g. Hollweg 1971). The ponderomotive flow makes V ·B0 nonzero as well.



Nonlinear Alfvén Waves with Viscosity Tensor 3

Both of these effects allow for the possibility of nonlinear viscous damping via the large parallel viscosity coefficient

η0.

With the benefit of modern observations (e.g. McIntosh et al. 2011; Morton et al. 2015), it is known that normalised

wave amplitudes b/B0 ∼ V/vA ∼ 0.1 are typical for the base of an open coronal field region, for example. The

“smallness” of the square of this ratio is very modest in comparison to the extreme largeness of η0/η2. Thus, it is

likely from the outset that viscous damping of Alfvén waves will be a nonlinear process governed by η0 and the wave

amplitude. This paper provides mathematical evidence that this heuristic analysis holds true, along with detailed

examination of the consequences.

Various previous studies have explored effects of Braginskii viscosity on MHD waves since Braginskii (1965). In

solar physics, the effect of linearized Braginskii viscosity was revisited from the 1980s to the mid-1990s through the

lens of phase mixing and resonant absorption, with the aim of determining how including the viscosity tensor modifies

these scale-shortening processes and their heating properties. At the time, it was common practice in solar MHD

wave theory to work with linearized equations. Thus, due to linearization, Steinolfson et al. (1986), Hollweg (1987),

Ruderman (1991), Ofman et al. (1994) and Erdelyi & Goossens (1995) obtained analytical and numerical results that

strictly apply to Alfvén waves of vanishing amplitude.

In adjacent fields, the effect of anisotropic viscosity on MHD waves has also been investigated with an eye on

MHD turbulence and the solar wind. Of particular note, Montgomery (1992) advocated that Braginskii viscosity is

important in hot tenuous plasmas, that in many circumstances it should be treated using parallel ion viscosity, and

that plasma motions may self-organise to suppress damping. He further applied these ideas to anisotropy in MHD

turbulence, on the basis that a quasi-steady turbulence is composed of the undamped modes. Quantitative elaboration

in Montgomery (1992) was based on a linear normal mode analysis, which captures linear damping of magnetoacoustic

waves by parallel viscosity, but excludes nonlinear viscous damping of Alfvén waves. The conclusion that a linearized

stress tensor damps Alfvén waves only negligibly, while damping magnetoacoustic waves significantly, was further

reinforced by related work by Oughton (1996, 1997).

Similar ideas to ours regarding the importance of nonlinearity were advocated by Nocera et al. (1986), who modelled

Alfvén waves subject to the η0 part of the Braginskii viscous stress tensor, retaining the leading-order nonlinear terms

in the wave perturbations. Consistent with the argument above, their calculations found that coronal Alfvén waves

damp nonlinearly by parallel viscosity. The current paper complements and extends the previous analysis by Nocera

et al. (1986), with the goal of producing a comprehensive understanding of the nonlinear damping and field-aligned

flows of propagating shear Alfvén waves with Braginskii viscosity.

A limitation of the mathematical techniques used in this paper is that they exclude certain other nonlinear effects

that may be important in plasmas, such as nonlinear interactions between waves. Numerical investigations will be

required in future to verify the analytical theory presented here, compare the relative importance of viscous damping

and other nonlinear effects such as parametric decay instability, and consider interactions between nonlinear processes

in Braginskii MHD.

This paper is organised as follows. § 2 provides scientific background on single-fluid Braginskii MHD and its

relationship to other single-fluid plasma models. § 3 quantitatively examines Alfvén wave heating by the full Braginskii

viscous stress tensor, demonstrating the importance of nonlinear η0 terms and compressibility, and obtaining the wave

decay properties for the weakly viscous limit using energy principles. In § 4, we argue that in highly viscous limit,

viscous heating is suppressed by self-organisation of the ponderomotive flow, which implies that viscosity strongly

alters the field-aligned flow associated with Alfvén waves in this regime. § 5 further strengthens the analysis, using

multiple scale analysis to obtain the decay properties without restrictions on the Alfvénic Reynolds number, assuming

the framework of Braginskii MHD. The paper finishes with discussion in § 6 and summary of main conclusions in § 7.

2. BRAGINSKII MHD

Braginskii MHD is an important plasma description that treats anisotropic viscosity and thermal conduction using

rigorous closure from physical principles. This section provides a short primer on single-fluid Braginksii MHD, its

connection with pressure (or temperature) anisotropy, and its relation to classical MHD and the CGL double-adiabatic

equations.

As is described in various plasma textbooks, fluid variables can be rigorously and robustly defined as velocity

moments of the underlying particle distribution functions. Transport equations for each particle species are then
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derived by taking moments of the kinetic Boltzmann equation, and combined to obtain the single fluid equations.

Recommended presentations can be found in Schunk & Nagy (2009) Chapter 7 and the Appendix of Spitzer (1962).

Assuming quasi-neutrality, and conservation of mass, momentum and energy, this process yields the mass continuity

equation,
∂ρ

∂t
+∇ · (ρV) = 0, (1)

momentum equation

ρ
DV

Dt
= −∇ ·P + ρG + j×B, (2)

energy equation,

D

Dt

(
3

2
p

)
+

5

2
p∇ ·V = −π : ∇V −∇ · q + j · (E + V ×B) , (3)

higher-order transport equations if required, and the generalized Ohm’s law.

The pressure tensor P that appears in Eq. (2) is the most fundamental representation of the internal forces associated

with thermal motions of particles. It is symmetric, so it represents six degree of freedom. The momentum equation

can also be reformulated by introducing the scalar pressure and stress tensor as

p =
1

3
Trace (P) =

1

3
Pαα, παβ = Pαβ − pδαβ , (4)

where δαβ is the Kronecker delta. So defined, the stress tensor π is symmetric and traceless. These definitions gives

the replacement −∇ ·P = −∇p−∇ · π.

Deriving transport equations by moment taking meets with a fundamental closure problem: the transport equation

for each fluid variable depends on a higher-order variable, producing an infinite regress unless the system can be

closed by other considerations. The method of closure is therefore a major distinguishing feature between different

fluid models for plasmas. It is also a major source of validity caveats. Various different methods of closure produce

governing equations that conserve mass, momentum and energy, since these properties are already built into Eqs. (1)–

(3). However, the different models discussed below disagree on the internal forces and heating, and can therefore

produce different behaviors.

Classical MHD (Hartmann 1937; Alfvén 1942, 1943; Batchelor 1950) corresponds to a closure treatment in which the

stress tensor and the heat flow vector are dropped from Eqs. (2) and (3). Dropping the stress tensor can be justified

when particle collisions or other forms of particle scattering such as wave-particle interactions are frequent enough

that the pressure tensor remains very close to isotropic. The resulting MHD equations are valid for many situations,

for instance modelling static equilibria, or dynamic situations in which the divergence of the stress tensor remains

small compared to the Lorentz force. It is nonetheless a truncation since higher order variables are set to zero rather
than approximated. Furthermore, collisionality in environments such as the solar corona is low enough that the stress

tensor can become significant for various dynamic phenomena, including MHD waves.

Braginskii MHD uses a less restrictive method of closure. As is detailed by Braginskii (1965), when the collisional

mean free path is significantly shorter than length scales over which fluid quantities vary, the heat flow vector takes

the form of an anisotropic thermal conduction, and the stress tensor takes the form of an anisotropic viscosity. Closure

can therefore be achieved by expressing q and π in terms of lower-order fluid variables, which are traditionally derived

using methods similar to Chapman & Cowling (1939) or Grad (1949).

The anisotropy inherent in q and π can be appreciated heuristically, by considering the helical motion of charged

particles in magnetized plasmas. The mean free path parallel to the magnetic field is the same as for unmagnetized

plasmas, implying that transport parallel to the magnetic field is the same as for unmagnetized plasmas. Meanwhile,

the mean free path perpendicular to the magnetic field is the gyroradius, which is typically much less than the mean

free path parallel to the magnetic field, which supresses perpendicular transport. Hence both thermal conduction and

viscous stresses are anisotropic with respect to the magnetic field direction, often extremely so.

The full Braginskii stress tensor, used in § 3, involves five viscosity coefficients. A useful simplification, used in § 5,

is that for strong magnetizations, Ωiτi � 1, the parallel η0 coefficient greatly exceeds the other viscosity coefficients.

Hence, one can often simplify by neglecting the smaller coefficients (although, as shown in § 3 it can be necessary to

retain other viscosity coefficients if length scales are highly anisotropic). In this simplification, one has the following
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covariant expressions for parallel viscosity (Lifshitz & Pitaevskii 1981; Hollweg 1986):

παβ = −3η0

(
hαhβ −

δαβ
3

)(
hµhν −

δµν
3

)
∂µVν ,

Qvisc = 3η0

((
hαhβ −

δαβ
3

)
∂αVβ

)2

,

(5)

where h = B/|B| is the unit vector in the direction of the magnetic field. These expressions are different to the

isotropic viscosity that appears in the Navier-Stokes equations, owing to the anisotropy introduced by the magnetic

field.

Parallel viscosity is closely related to pressure anisotropy. As pointed out by Chew et al. (1956), when Ωiτi � 1 the

particle Lorentz force makes the pressure tensor gyrotropic, giving it the form

Pαβ = p⊥δαβ + (p|| − p⊥)hαhβ . (6)

This is a significant simplification, since the six degrees of freedom of a general pressure tensor have been replaced

with two variables, p|| and p⊥. The definitions in Eqs. (4) then yield p = (p|| + 2p⊥)/3 and

παβ = (p|| − p⊥)

(
hαhβ −

δαβ
3

)
. (7)

Equation (7) shows that pressure anisotropy has an equivalent stress tensor, which is proportional to p|| − p⊥.

Furthermore, Eqs. (5) and (7) both have the form παβ ∼ (hαhβ − δαβ/3), so equivalence of the stress tensors reduces

to equivalence of the scalar factors in the two equations. An illuminating analysis of the conditions under which

they converge has been written by Hollweg (1985, 1986), the most important condition being that collisions (or other

processes such wave-particle interactions) relax the pressure anisotropy driven by velocity gradients to an extent that

the pressure is only weakly anisotropic. Classical MHD, for comparison, assumes that pressure anisotropy can be

neglected altogether.

For low collisionality, the quasistatic approximation in Braginskii MHD ceases to be valid and strong pressure

anisotropy may develop. Under these conditions, separate evolution equations can be derived for p|| and p⊥ (Chew

et al. 1956; Hollweg 1986). However, the closure problem rears its head again, because those equations depend on the

heat flow vector. A simple approach to obtaining a closed system is to ignore the heat flow vector, thus obtaining

the CGL double adiabatic equations (Chew et al. 1956), which are commonly used for collisionless plasma. More

sophisticated approaches also exist that solve for the evolution of the pressure anisotropy or the evolution of the stress

tensor, retaining the heat flow vector and closing by other means. The works by Balescu (1988); Schunk & Nagy

(2009); Zank (2014); Hunana et al. (2019a,b, 2022) provide further reading on this topic.

Summarising, there exists a family of adjacent (sometimes overlapping) single-fluid models for plasmas. The most

appropriate choice for a particular problem and/or context depends on the collisionality. When MHD timescales are

greater than the ion collision time, Braginskii MHD provides rigorous closure and treats the internal forces and heat

flow more accurately than classical MHD.

3. ALFVÉN WAVE HEATING BY BRAGINSKII VISCOSITY

3.1. Model

We quantitatively examine the viscous dissipation for an Alfvén wave, which is a transverse wave polarized so that the

magnetic perturbation is perpendicular to the equilibrium magnetic field and the wavevector. Setting the equilibrium

magnetic field in the z-direction, the magnetic perturbation in the x-direction and the wavevector in the yz-plane, we

consider a total magnetic field of the form

B = b(y, z, t)ex +B0ez. (8)

This ansatz automatically satisfies ∇ ·B = 0. For the velocity field we assume the form

V = Vx(y, z, t)ex + Vz(y, z, t)ez. (9)
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The Vx is the dominant velocity component. In linearized theory it would be the only component of V. Additionally,

we have explicitly included a higher-order Vz term that represents the nonlinear ponderomotive flow parallel to the

equilibrium magnetic field, which is driven by gradients of the magnetic pressure perturbation b2/2µ0 associated with

a finite-amplitude Alfvén wave (e.g. Hollweg 1971). The Vz term can be dropped when the plasma is incompressible

(see § 3.3), however it is required for a nonlinear treatment of compressible plasma and affects the wave heating via the

parallel viscosity coefficient η0 (as remarked in § 1). The expression for Vz in classical MHD is given later in Eq. (29).

In a full solution, derivatives of b2/2µ0 with respect to y give rise to an additional nonlinear y-component of V,

which in turn produces a nonlinear y-component of B. These terms are not shown explicitly in Eqs. (8) and (9). Such

terms were included by Nocera et al. (1986) and appear not to affect our main conclusions, provided the perpendicular

wavelength of the Alfvén wave is sufficiently large.

The viscous force is determined from the viscous stress tensor παβ by

Fvisc,α = −∂παβ
∂xβ

, (10)

and the viscous heating rate is determined using

Qvisc = −παβ
∂Vα
∂xβ

, (11)

where α ∈ {x, y, z}, β ∈ {x, y, z}, the xβ are components of the position vector, Vα are components of V and repeated

indices imply summation in the Einstein convention.

A vital point is that the viscous stress tensor depends on the direction of the magnetic field given by the unit vector

h = B/|B|, which for our Alfvén wave model in Eq. (8) has

hx =
b√

B2
0 + b2

, hy = 0, hz =
B0√
B2

0 + b2
, (12)

with h2x + h2z = 1. Our analysis differs from many past works by considering hx 6= 0 and identifying the dominant

heating contribution at the end, as opposed to setting hx = 0 before evaluating the damping effect on Alfvén waves.

Applying formulas from §4 of Braginskii (1965) (equivalent matrix expressions are given by Hogan 1984), the stress

tensor is related to five viscosity coefficients by

παβ = −
2∑
i=0

ηiWiαβ +

4∑
i=3

ηiWiαβ . (13)

The gyroviscous η3 and η4 terms do not contribute to heating, so evaluating the heating rate Qvisc requires

W0αβ =
3

2

(
hαhβ −

1

3
δαβ

)(
hµhν −

1

3
δµν

)
Wµν ,

W1αβ =

(
δ⊥αµδ

⊥
βν +

1

2
δ⊥αβhµhν

)
Wµν ,

W2αβ =
(
δ⊥αµhβhν + δ⊥βνhαhµ

)
Wµν ,

(14)

where δαβ is the Kronecker delta,

δ⊥αβ = δαβ − hαhβ , (15)

and the rate of strain tensor is

Wαβ =
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2

3
δαβ∇ ·V. (16)



Nonlinear Alfvén Waves with Viscosity Tensor 7

For the shear Alfvén wave geometry described by Eq. (9), the Wi tensors become

W0 =
(
hxhz∂zVx +

(
2
3 − h

2
x

)
∂zVz

)3h2x − 1 0 3hxhz

0 −1 0

3hxhz 0 3h2z − 1

 , (17)

W1 =hx (hz∂zVx − hx∂zVz)

−h2z 0hxhz

0 1 0

hxhz 0 −h2x

+ (hx∂yVx − hz∂yVz)

 0 hz 0

hz 0 −hx
0 −hx 0

 , (18)

W2 =
((

1− 2h2x
)
∂zVx − 2hxhz∂zVz

) 2hxhz 0 1− 2h2x
0 0 0

1− 2h2x 0−2hxhz

+ (hx∂yVx + hz∂yVz)

 0 hx 0

hx 0 hz

0 hz 0

 , (19)

The viscous heating rate with hx 6= 0 retained is thus

Qvisc =
η0
3

(
3hxhz∂zVx + (2− 3h2x)∂zVz

)2
+ η1h

2
x (hz∂zVx − hx∂zVz)2 + η1 (hz∂yVx − hx∂yVz)2

+ η2
((

1− 2h2x
)
∂zVx − 2hxhz∂zVz

)2
+ η2 (hx∂yVx + hz∂yVz)

2
. (20)

3.2. Two small parameters

As anticipated in § 1 (e.g. Fig. 1), two parameters determine the relative importance of individual terms in Eq. (20).

The first small parameter is (b/B0)
2
, the ratio of the wave’s magnetic energy density to the energy density of the

background magnetic field, which enters through hx and hz. In the modern era, extensive observations of coronal

MHD waves (Nakariakov & Verwichte 2005; De Moortel & Nakariakov 2012) allow (b/B0)
2

to be quantified with good

certainty, directly from resolved wave observations or indirectly from spectral line widths. For example, Morton et al.

(2015) studied waves at the base of a coronal open field region using both approaches and reported a wave speed vA =

400 km s−1 and wave motions at v = 35 km s−1. Both measurements are consistent with earlier findings for coronal

holes and the quiet Sun (e.g. McIntosh et al. 2011). From observations like these, h2x ∼ (b/B0)
2 ∼ (v/vA)

2 ∼ 10−2 .

The second small parameter is (Ωiτi)
−2

, which sets the viscosity coefficients η1 and η2 relative to η0. The value of

Ωiτi can vary significantly in the corona, but if magnetic null points are excluded one obtains values similar to the

estimates made by Hollweg (1985), who found 3.4 × 105 for a solar active region and 7.2 × 105 near the base of a

coronal hole. We therefore expect (Ωiτi)
−2 . 10−11 under common conditions, and η1 and η2 simplify to

η2 =
6408

5125
(Ωiτi)

−2
η0, η1 =

1

4
η2. (21)

The numerical coefficients in Eq. (21) are obtained in the limit (Ωiτi)
−2 → 0, e.g. from Eq. (73) of Hunana et al.

(2022). They are approximate for finite (Ωiτi)
−2 but have a high degree of accuracy because the corrections to the

coefficients are of the order of (Ωiτi)
−2 . 10−11. Inspecting Eq. (21) and considering (Ωiτi)

−2 . 10−11, the η2 and η1
coefficients are both vastly smaller than η0.

The smallness of (b/B0)
2

and the smallness of (Ωiτi)
−2

compete to make different terms dominate the viscous heating.

If one tries to simplify Eq. (20) by setting (b/B0)
2

to zero, then hx = 0 and Vz = 0 gives Qvisc = η2 (∂zVx)
2
+η1 (∂yVx)

2
,

as obtained by Braginskii (1965). On the other hand, if one tries to simplify by first taking (Ωiτi)
−2

to zero then only

η0 terms remain, suggesting a different conclusion. Thus, the quantitative results recover the two branches shown in

Fig. 1. To correctly determine the damping under coronal conditions, one must carefully compare terms in the full

Eq. (20), bearing in mind that there are two small parameters, which we do now (diagonal branch in Fig. 1).

3.3. Heating rate for incompressible plasma

The analysis for incompressible plasma is relatively straightforward, which makes it a natural starting point for

discussion. The assumption of incompressibility is appropriate for liquid metals or high-beta plasmas, but not, we

note, for the corona. The use of coronal wave amplitudes and magnetizations in this section is therefore intended to

be instructive only, with the compressible finite-beta treatment that follows later in this paper being required to treat

the corona.
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In the incompressible case, ∇ · V = 0 applied to our Alfvén wave geometry implies Vz = 0. Thus Eq. (20) with

η1 = 1
4η2 simplifies to

Qvisc =

{
3η0h

2
xh

2
z + η2

((
1− 2h2x

)2
+

1

4
h2xh

2
z

)}
(∂zVx)

2
+ η2

(
1

4
h2z + h2x

)
(∂yVx)

2
. (22)

The terms involving ∂zVx set the viscous dissipation due to wavelengths parallel to the equilibrium magnetic field,

and we first ask whether dissipation due to parallel wavelengths is dominated by the linear η2 contribution that has

been widely recognised since Braginskii (1965), or the nonlinear η0 contribution. The ratio of the two terms inside the

curly brackets in Eq. (22) is

3h2x
η0
η2

[
1− h2x

(1− 2h2x)2 + 1
4h

2
x(1− h2x)

]
≈ 3h2x

η0
η2
≈ 2.4h2x(Ωiτi)

2, (23)

where the first step simplifies using h2x � 1 (for the observed value of h2x ≈ 10−2, retaining the terms in the square

bracket increases the ratio by 2.8%, so this approximation is both accurate and conservative) and the substitution for

η0/η2 is by Eq. (21). For the coronal wave amplitudes and Ωiτi values noted in § 3.2, this ratio exceeds 109, with

the nonlinear damping via η0 dominating the heating rate by that factor. In other words, the viscous dissipation of

Alfvén waves via derivatives aligned with the equilibrium magnetic field is a factor 109 stronger than predicted by

linear theory.

We now evaluate the role of derivatives perpendicular to the equilibrium magnetic field by comparing the nonlinear

η0 term in Eq. (22) to the term involving ∂yVx. The ratio of these heating rate terms is

12h2x
η0
η2

(
λ⊥
λ||

)2 [
1− h2x
1 + 3h2x

]
≈ 12h2x

η0
η2

(
λ⊥
λ||

)2

≈ 9.6h2x (Ωiτi)
2

(
λ⊥
λ||

)2

, (24)

where λ⊥ and λ|| are the wavelengths perpendicular and parallel to the equilibrium magnetic field (for the observed

value of h2x ≈ 10−2, the approximation of the terms in h2x is accurate to 3.9%). For the coronal parameters noted

above, if λ⊥ ≈ λ|| then the nonlinear η0 term again dominates by a factor that exceeds 109. For smaller transverse

wavelengths, the nonlinear η0 term dominates whenever λ⊥ & 10−5λ||. If one considers a wave speed of 400 km s−1

and a frequency of 3 mHz, consistent with the observations by Morton et al. (2015), the condition that the nonlinear η0
term dominates becomes λ⊥ & 800 m. Given that CoMP has imaged Alfvénic waves using 3 Mm pixels, this condition

appears to be met by a very large margin, making the nonlinear η0 dissipation dominant over the η2 linear dissipation.

The purpose of deriving Eq. (22) and the ratios on the left hand sides of Eq. (23) and (24) such that they include

all appearances of hx and hz is that they can be evaluated exactly for a given value of hx. This makes it explicit that

our conclusions are insensitive to the precise value of hx, only that the value of hx is broadly consistent with coronal

observations. While that approach is most comprehensive, the same conclusions can also be reached by separately

simplifying each term in Eq. (22) using h2x � 1 and h2z = 1− h2x ≈ 1 to obtain the less cumbersome formula

Qvisc =
{

3η0h
2
x + η2

}
(∂zVx)

2
+ η1 (∂yVx)

2
, (25)

and comparing terms to reach the same conclusions.

3.4. Compressible plasma with large Re

Under typical coronal conditions, the thermal pressure is too small to prevent compression of the plasma by nonlinear

magnetic pressure forces, thus a nonlinear Vz develops that is known as the ponderomotive flow (Hollweg 1971). This

flow component affects the viscous heating rate via the parallel viscosity coefficient η0, hence compressible theory is

required for nonlinear viscous damping of Alfvén waves in plasma.

We define the Alfvénic Reynolds number as

Re =
ρvA
k||η0

. (26)

This dimensionless parameter differs from the traditional Reynolds number since it refers to the Alfvén speed vA =

B/
√
µ0ρ instead of a typical fluid velocity. This distinction mirrors that between the Lundquist number and magnetic

Reynolds number in resistive MHD. Justification for defining Re according to Eq. (26) will be found in the detailed
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mathematical solutions in § 5, in which it is found to be a natural parameter of the system (also see Nocera et al.

1986).

In this section, the ponderomotive Vz will be related to Vx using expansions in the amplitude of the primary wave

fields. Several assumptions are used to accomplish this. First, we make use of the result that a travelling wave solution

propagating in the positive z-direction has
∂

∂t
≡ −vA

∂

∂z
, (27)

where vA is the wave speed. For simplicity it is assumed that derivatives of background quantities are sufficiently weak

to play a higher-order role on the dynamics. We also simplify here by replacing full treatment of thermal conduction

with two thermodynamic cases: adiabatic and isothermal. Finally, it is assumed that Re is large enough that viscous

forces can be neglected at leading order when evaluating Vz, which makes it possible to obtain an algebraic relationship

between Vz and b2. This assumption will be removed for § 5, in which the effect of viscous forces on Vx and Vz is

included.

The x-components of the momentum and induction equations are unaffected by the ponderomotive flow at leading

order in the wave amplitude. From them one recovers the Walén relation for propagating Alfvén waves, b/B0 = −Vx/vA.

At leading order, the z-component of the momentum equation is

ρ0
∂Vz
∂t

+
∂

∂z

(
δp+

b2

2µ0

)
= 0, (28)

where the viscous force has been neglected since we currently consider the limit of large Re. Using Eq (27) and

integrating yields an algebraic relationship between Vz, δp and b2. In an adiabatic treatment, the energy equation

yields δp = γp0Vz/vA, hence we obtain

Vz
vA

=
1

2(1− β)

(
b

B0

)2

, (29)

where

β =

(
cs
vA

)2

=
γ

2

(
p

B2
0/2µ0

)
. (30)

In an isothermal treatment, the ideal gas law p = ρRT yields δp/p0 = δρ/ρ0 = Vz/vA. This does not change the

form of Eq. (29); instead, the isothermal case is recovered simply by setting γ = 1 in the definition of β.

Defining β as the square of the ratio of the sound speed (cs =
√
γp0/ρ0) to the Alfvén speed differs slightly from the

convention of defining β as the ratio of thermal pressure to magnetic pressure, due to the factor γ/2, which is 5/6 for

an adiabatic monoatomic gas, and 1/2 for an isothermal model. Defining β as the speed ratio squared leads to cleaner

mathematics for many MHD wave problems, including this one, and it has therefore become established practice in

MHD wave theory.

The β = 1 singularity in Eq. (29) arises because cs = vA implies resonance between the Alfvén wave and an acoustic

wave, which resonantly transfers energy between the waves. In this specific case, Eq. (27) does not apply because it

does not account for evolution due to resonance. Similarly, Eq. (28) assumes that Vz � vA to simplify the convective

derivative, and the solution in Eq. (29) does not satisfy this condition in the immediate vicinity of β = 1. The β = 1

resonance and the singularity in Eq. (29) are not of concern for most coronal applications, which typically have β < 0.2,

but there are special cases in which it is of interest, such as waves propagating towards coronal magnetic nulls or across

the β = 1 layer in the lower solar atmosphere. Russell et al. (2016) have previously applied such nonlinear resonant

coupling to the problem of sunquake generation by magnetic field changes during solar flares.

Differentiating Eq. (29) and employing the relation b/B0 = −Vx/vA yields

∂αVz = − 1

(1− β)

hx
hz
∂αVx, (31)

which can be used to eliminate Vz from Eq. (20). To leading order in h2x in each viscosity coefficient, we find

Qvisc =
{
Cη0h

2
x + η2

}
(∂zVx)

2
+ η1(∂yVx)2, (32)

where

C =
1

3

(
1− 3β

1− β

)2

. (33)
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Some special cases are noteworthy. The incompressible results of § 3.3 are recovered for β →∞, which gives Vz → 0

and C → 3. Similarly, the cold plasma solution is recovered by setting β = 0, which gives Vz = (b/B0)
2
/2 and

C = 1/3.

The nonlinear heating rate for cold plasma (β = 0) is a factor nine smaller than for incompressible plasma (β →∞),

which demonstrates the importance of compressibility for this problem. Furthermore, C(β) is monotonically decreasing

between β = 0 and β = 1/3. Since 0 < β < 1/3 for most coronal applications, the dissipation rate due to nonlinear

Braginskii viscosity in these environments is reduced compared to the cold plasma solution. For example, given β = 0.1,

the heating rate is approximately 60% of the value for cold plasma. It is therefore evident that compressibility and

finite-beta effects must be treated when assessing viscous dissipation of Alfvén waves.

Another important feature is that C has a zero for β = 1/3. This is one circumstance in which

Vz
vA

=
3

4

(
Vx
vA

)2

=
3

4

(
b

B0

)2

, (34)

which causes cancellation within the η0 contribution to Qvisc. That a particular organisation of Vz/vA can suppress

nonlinear viscous dissipation is an important novel finding that § 4 explores further in the context of low Re.

The final feature of C is the singularity at β = 1. As noted earlier in this section, cs = vA implies that the Alfvén

wave is in resonance with a sound wave, which transfers energy between the Alfvén wave and the sound wave. Caution

is needed around the resonance, since resonant energy transfer cannot be described using Eq. (27), which was used to

derive Eq. (33).

Evaluation of ratios of heating terms from Eq. (32) proceeds as for the comparison in Sec. 3.3, but with η0 multiplied

by C/3. The top-level conclusions remain intact: heating by the Braginskii viscous stress tensor is dominated by an

η0 term that is nonlinear in the wave amplitude, and for coronal values, heating due to the nonlinear η0 term is many

orders of magnitude larger than the heating due to the linear η1 and η2 terms.

3.5. What wave amplitude is linear?

An important implication of the preceding analysis is that nonlinear effects become significant for anisotropic viscosity

at far lower wave amplitudes than they do for other terms in the MHD equations. Linearizing the Braginskii viscous

stress tensor is only appropriate when h2x ∼ (b/B0)2 � (Ωiτi)
−2

, which in the corona corresponds to a requirement

that the wave energy density is less than 10−11 times the energy density of the background magnetic field, far too

small to be relevant to coronal energetics. Waves that have small enough amplitudes to be governed by linear viscous

damping theory would be unobservable and have no effect on the coronal energy balance. Thus, for coronal Alfvén

waves, viscosity must be treated nonlinearly in the wave amplitude, as well as anisotropically due to the magnetic field.

Interestingly, this linearization condition is far more stringent than the linearization condition for other terms in the

MHD equations, whereby h2x is normally compared to unity. The extreme difference in these linearization conditions

is due to the large η0/η2 ratio produced by the strong magnetization.

3.6. Damping scales for large Re (energy derivation)

It is of major interest to know the time and length scales over which waves damp. This section provides a relatively

simple derivation of the decay scales for nonlinear viscous damping of propagating shear Alfvén waves for large Re,

using energy principles.

Dropping the η1 and η2 terms from Eq. (32), the heating rate due to the η0 parallel viscosity coefficient for large Re

is

Qvisc =
η0
3

(
1− 3β

1− β

)2(
b

B0

)2

(∂zVx)2. (35)

A wave energy decay time can be defined according to τd = 〈Ew〉 / 〈Qvisc〉, where 〈.〉 denotes the time average over

a wave period, and Ew is the wave energy density. The corresponding decay length is Ld = vAτd.

For forward propagating Alfvén waves, Ew ≈ ρ0V 2
x , and Vx = a cos(φ) where φ = k||(z − vAt). Hence,

Ew = ρ0a
2 (1 + cos(2φ))

2
. (36)

Similarly, using Eq. (35) with (b/B0)2 ≈ (Vx/VA)2,

Qvisc =
η0k

2
||

3v2A

(
1− 3β

1− β

)2

a4
(1− cos(4φ))

8
, (37)
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which give the fast time averages

〈Ew〉=
ρ0a

2

2
, (38)

〈Q〉=
η0k

2
||a

4

24v2A

(
1− 3β

1− β

)2

. (39)

The wave energy decay scales are therefore

τd =
12ρ0

η0k2||(a/vA)2

(
1− β
1− 3β

)2

, (40)

Ld =
12ρ0vA

η0k2||(a/vA)2

(
1− β
1− 3β

)2

. (41)

Equations (40) and (41) show that waves with larger k|| (equivalently, higher frequencies) are damped on shorter

scales. We also remark that since Ld depends on the amplitude of Vx (the constant a), the decay envelope is non-

exponential. The damping properties are elaborated on more fully in § 5, in which the assumption of large Re is

removed and the functional form of the wave envelope is determined.

4. SELF-ORGANISED VISCOUS FLOW

In the limit Re→ 0, the viscous force in the z-component of the momentum equation risk becoming extremely large,

unless the flow self-organises to prevent this. Correspondingly, in the limit Re → 0, strong dissipation will prevent

waves from propagating, unless Vz is determined by viscosity. One can therefore expect self-organisation of the flow

pattern for Alfvén waves in highly viscous plasma (small values of Re), which is a concept previously advanced by

Montgomery (1992).

To investigate quantitatively, we analyze the highly magnetised regime Ωiτi � 1, simplifying the stress tensor

and heating rate by retaining only the η0 parallel viscosity coefficient. Inspecting Eq. (5), components of παβ are

proportional to (hµhν − δµν/3)∂µVν , and Qvisc is proportional to the square of this expression. Applying the shear

Alfvén wave geometry of Eqs. (8) and (9) and simplifying by h2x � 1,(
hµhν −

δµν
3

)
∂Vν
∂xµ

≈ hx
∂Vx
∂z

+
2

3

∂Vz
∂z

. (42)

Viscous forces and heating can be suppressed, allowing Alfvén wave propagation, if the flow self-organises to keep this

expression close to zero. Using the Alfvén wave relation to substitute hx ≈ b/B0 ≈ −Vx/vA and integrating, we find

that for small Re
Vz
vA

=
3

4

(
Vx
vA

)2

=
3

4

(
b

B0

)2

. (43)

The relation specified by Eq. (43) appeared previously in the different context of § 3.4, where it was seen that viscous

dissipation of Alfvén waves in high Re plasma is suppressed for the special case of β = 1/3. The flow pattern required

to produce cancellation within the η0 part of Qvisc is independent of Re and β, but it occurs for different reasons

in the two cases: in § 3.4 it arose as a special case of ponderomotive flow with finite β; when Re is small, it occurs

because of self-organisation through viscous forces.

This novel result demonstrates that decay scales and other properties derived in § 3 should not be extrapolated to

small Re. Instead, we expect that as Re → 0, the viscous force organises the flow such that Vz obeys Eq. (43), for

which dissipation is suppressed by cancellation within the η0 part of Qvisc.

5. MULTIPLE SCALE ANALYSIS

Section 3 used methods of analysis based on heating rates and energy principles. Section 5 now takes a complementary

approach of solving the full set of governing equations using multiple scale analysis, to reinforce the results of § 3,

extend to general Re by including the effect of the viscous force on V, and obtain additional results including the

functional form of the nonlinear decay.
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5.1. Comparison to Nocera et al. (1986)

We preface the multiple scale analysis part of this paper with some remarks about related calculations by Nocera

et al. (1986). Their work and ours both concentrate on η0 viscosity as the main source of wave damping, treating this

nonlinearly in the wave amplitude (the horizontal branch of Figure 1). Also in common, both treat ponderomotive

and finite β effects.

The previous work of Nocera et al. (1986) derived a version of the viscous stress tensor that includes the leading

order effect of hx 6= 0 in the η0 term. Terms in the viscosity tensor were then compared, concluding like our § 3

(but by different arguments) that the nonlinear η0 term exceeds contributions from other viscosity coefficients when

(b/B0)2 � (Ωiτi)
−2 (their Eq. (3.13)). The two studies thus agree on the dominance of nonlinear η0 viscosity.

Nocera et al. (1986) then found a decay length using the following strategy. A self-consistent perturbation ordering

was introduced, then the x-components of the momentum and induction equations were combined to obtain a single

equation for Vx, which at linear order is a wave equation. Next, all variables apart from Vx were eliminated from the

leading-order nonlinear term. Finally, they concluded from a stability analysis that waves with k⊥ = 0 are damped

nonlinearly, with a decay time that has the same form as our Eq. (40) (their Eq. (5.7), given in terms of normalised

variables).

The detailed derivation that follows in § 5.2 draws inspiration from the framework developed by Nocera et al. (1986).

We have also taken the opportunity to make several changes that we regard as improvements, most importantly:

1. Nocera et al. (1986) assumed that the fast time average of Vz is zero, which necessitated adding a non-zero

constant of integration to Vz. By contrast, we will set the constant of integration to zero, which is the only choice

for which an Alfvén wave driver switching on at one boundary does not unphysically send an instantaneous signal

to infinity. Additional support for our choice comes from simulations of nonlinear longitudinal flows produced

by Alfvén waves (e.g. McLaughlin et al. 2011), which are consistent with the constraint used in our work.

2. The stability analysis in §5 Nocera et al. (1986) is replaced with a multiple scale analysis of the type covered in

Chapter 11 of Bender & Orszag (1978).

3. Nocera et al. (1986) made their wave envelope a function of z+ vAt. We treat the envelope as time-independent

and thus explicitly investigate damping of a propagating wave with respect to distance.

4. Our derivation provides the envelope of Vx as well as the decay length.

5. Our solution is valid for general Re, whereas Nocera et al. (1986) solved for the decay scales in the low-viscosity

limit of high Re only.

Equally, Nocera et al. (1986) treated cases that we do not, including the possibility of k⊥ large enough for coupling

between the Alfvén and fast modes to alter the wave properties (referred to in their paper as the case of phase mixed

waves).

5.2. Detailed solution

5.2.1. Geometry and perturbations

We assume the Alfvén wave geometry of Eqs. (8) and (9), set ∂/∂y ≡ 0 to concentrate on waves without short

perpendicular scales, and introduce density and pressure perturbations δρ and δp together with a self-consistent

perturbation ordering that has Vx/vA ∼ b/B0 ∼ ε1/2 and Vz/vA ∼ δρ/ρ0 ∼ δp/p0 ∼ ε. The viscosity η0 and

background quantities B0, ρ0 and p0 are treated as locally homogeneous for simplicity.

5.2.2. Nonlinear wave equation

Starting from the ideal induction equation,

∂B

∂t
= ∇× (V ×B) , (44)

we have
∂b

∂t
−B0

∂Vx
∂z

= − ∂

∂z
(bVz) (exact), (45)

where the linear terms have been grouped on the left hand side and the nonlinear term on the right hand side.
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The momentum equation is

ρ

(
∂Vα
∂t

+ (V · ∇)Vα

)
= − ∂

∂xα

(
p+

B2

2µ0

)
+

1

µ0
(B · ∇)Bα −

∂παβ
∂xβ

. (46)

When η0 contributions dominate the viscous force, Eqs. (13) and (17) give

−πxz = 3η0
b

B0

(
b

B0

∂Vx
∂z

+
2

3

∂Vz
∂z

)
+O(ε5/2) (47)

so the x-component of Eq. (46) becomes

∂Vx
∂t
− B0

µ0ρ0

∂b

∂z
= −δρ

ρ0

∂Vx
∂t
− Vz

∂Vx
∂z

+
3η0
ρ0

∂

∂z

(
b

B0

[
b

B0

∂Vx
∂z

+
2

3

∂Vz
∂z

])
+O(ε5/2), (48)

where linear terms and nonlinear terms have again been placed on opposite sides of the equation.

Taking the time derivative of Eq. (48) and using Eq. (45) to eliminate b from the linear terms,(
∂2

∂t2
− v2A

∂2

∂z2

)
Vx = −v2A

∂2

∂z2

(
b

B0
Vz

)
− ∂

∂t

(
δρ

ρ0

∂Vx
∂t

+ Vz
∂Vx
∂z

)
+

3η0
ρ0

∂2

∂t∂z

(
b

B0

[
b

B0

∂Vx
∂z

+
2

3

∂Vz
∂z

])
+O(ε5/2).

(49)

Interpreting Eq. (49), the linear terms (on the left hand side) correspond to a wave equation with wave speed vA. The

leading nonlinear terms (those shown explicitly on the right hand side) include the leading-order effect of the anisotropic

viscosity, which enters at the same order as the leading nonlinear terms that appear in perturbative nonlinear theory

of ideal Alfvén waves.

Next, we eliminate b and δρ from the O(ε3/2) nonlinear terms in Eq. (49). Equations (45) and (48) are solved at

linear order by the Alfvén wave relation
b

B0
= ±Vx

vA
+O(ε3/2). (50)

We choose the negative sign so waves travel in the positive z direction, giving

b

B0
= −Vx

vA
+O(ε3/2). (51)

The travelling wave behaviour of the linear solution together with assumption that the wave envelope changes over a

distance controlled by the leading order nonlinear terms in Eq. (49) allows replacement

∂

∂t
= −vA

∂

∂z
+O(ε). (52)

The density perturbation is governed by the mass continuity equation

∂ρ

∂t
+∇ · (ρV) = 0, (53)

which gives for our shear Alfvén wave
∂δρ

∂t
= −ρ0

∂Vz
∂z

+O(ε2). (54)

Then, using Eq. (52) and integrating,
δρ

ρ0
=
Vz
vA

+O(ε2). (55)

The constant of integration has been set to zero, for reasons discussed in § 5.1.

Using these results, Eq. (49) becomes(
∂2

∂t2
− v2A

∂2

∂z2

)
Vx = vA

∂2

∂z2
(VxVz) +

3η0
ρ0

∂2

∂t∂z

(
Vx
vA

[
Vx
vA

∂Vx
∂z
− 2

3

∂Vz
∂z

])
+O(ε5/2). (56)
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Now that the problem has been reduced to the two variables Vx and Vz, it is convenient to make the ε dependence

explicit by introducing dimensionless variables v and w defined by

Vx(z, t) = ε1/2vAv(z, t), Vz(z, t) = εvAw(z, t). (57)

Expressing Eq. (56) in the dimensionless variables v and w, and dropping the non-explicit higher order terms from the

right hand side, we seek solutions to(
∂2

∂t2
− v2A

∂2

∂z2

)
v = ε

(
v2A

∂2

∂z2
(vw) +

η0
ρ0

∂2

∂t∂z

(
∂v3

∂z
− 2v

∂w

∂z

))
. (58)

5.2.3. Multiple scale analysis

Equation (58) is now solved using multiple scale analysis (e.g. Bender & Orszag 1978). Applying this technique, one

introduces a new variable Z = εz that defines a long length scale, and the perturbation expansions

v(z, t) = v0(z, Z, t) + εv1(z, Z, t) + . . . (59)

w(z, t) =w0(z, Z, t) + εw1(z, Z, t) + . . . . (60)

Derivatives are treated using the chain rule as though z and Z are independent variables and setting dZ/dz = ε.

Thus,

∂v

∂z
=
∂v0
∂z

+ ε

(
∂v0
∂Z

+
∂v1
∂z

)
+O(ε2), (61)

∂2v

∂z2
=
∂2v0
∂z2

+ ε

(
2
∂2v0
∂Z∂z

+
∂2v1
∂z2

)
+O(ε2), (62)

with equivalent expressions for derivatives of w.

Substituting into Eq. (58), collecting ε0 terms, and thus solving the homogeneous wave equation(
∂2

∂t2
− v2A

∂2

∂z2

)
v0 = 0, (63)

obtains d’Alembert’s solution

v0(z, Z, t) = f(z − vAt, Z) + g(z + vAt, Z). (64)

For forward propagating waves, the function g is zero.

The corresponding w0 is obtained by integrating the z-component of the momentum equation, Eq. (46), which gives

Vz
vA

=
1

ρ0v2A

(
δp+

b2

2µ0
+ πzz

)
+O(ε2). (65)

From Eqs. (13) and (17), we have

−πzz = 2η0

(
b

B0

∂Vx
∂z

+
2

3

∂Vz
∂z

)
+O(ε2). (66)

A substitution for the pressure perturbation δp is obtained by integrating the energy equation,

∂p

∂t
+ V · ∇p+ γp∇ ·V = (γ − 1)Qvisc. (67)

The viscous heating Qvisc is of order O(ε2), so integration gives the adiabatic relation

δp

p0
= γ

Vz
vA

+O(ε2). (68)

Alternatively, one can consider isothermal conditions using δp/p0 = Vz/vA from the ideal gas law, which is recovered

from Eq. (68) by setting γ = 1.
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Using Eqs. (66) and (68), and eliminating b terms using Eq. (51), Eq. (65) can be expressed as(
1− β +

4

3

η0
ρ0vA

∂

∂z

)
w =

(
1

2
+

η0
ρ0vA

∂

∂z

)
v2, (69)

where β = (cs/vA)2 and dropped terms are O(ε). When v and w are expanded according to Eqs. (59) and (60), an

equation identical to (69) connects w0 and v0.

Inspecting Eq. (69), it is evident that obtaining w for a known v in general requires solving a first order linear partial

differential equation. In the limit where the viscous terms can be neglected, the problem simplifies to the algebraic

w = v2/2(1 − β) relation used in Sec. 3.4. Similarly, when the viscous terms dominate, one obtains the w = (3/4)v2

relation for viscously self-organised parallel flow discussed in Sec. 3.4. For the detailed solution in this section, we

retain the complete set of forces that determine Vz, solving the full Eq. (69).

Solution is facilitated by considering the special case where v0 oscillates sinusoidally in time. For the rest of this

derivation we therefore set

v0 = A(Z)eiφ +A∗(Z)e−iφ, φ = k||(z − vAt), (70)

where A(Z) ∈ C and ∗ denotes the complex conjugate. Representing A in polar form,

A(Z) = R(Z)eiθ(Z), (71)

Eq. (70) is equivalent to

v0(z, Z, t) = 2R(Z) cos(k||(z − vAt) + θ(Z)). (72)

From inspection, 2R(Z) is the local amplitude and θ(Z) is a phase shift. We have found the complex form in Eq. (70)

more convenient to work with in the following.

We now solve for the corresponding w0. Noting that

v20 = A2e2iφ + 2|A|2 +A∗2e−2iφ, (73)

where |A|2 = AA∗, we seek a solution of the form

w0 = De2iφ +D∗e−2iφ + ŵ0. (74)

Substituting into Eq. (69), terms in e0 give

ŵ0 =
|A|2

1− β
, (75)

while terms in e2iφ and e−2iφ independently give

D = αA2, α =
1

2

(1 + 4ik||η0/ρ0vA)

(1− β + (8/3)ik||η0/ρ0vA)
. (76)

The solution for w0 can also be expressed without complex numbers. Making explicit the real and imaginary parts

of α = αr + iαi, we have the real constants

αr =
1

2

(1− β + (32/3)(Re)−2)

((1− β)2 + (64/9)(Re)−2)
, (77)

αi=
2

3

(1− 3β)(Re)−1

((1− β)2 + (64/9)(Re)−2)
, (78)

where Re = ρ0vA/k||η0 consistent with Eq. (26). It is then easily shown that

w0

2R(Z)2
= αr cos(2(k||(z − vAt) + θ(Z)))− αi sin(2(k||(z − vAt) + θ(Z))) +

1

2(1− β)
. (79)

To deduce R(Z) and θ(Z), we return to analysing Eq. (58). The ε1 terms in Eq. (58) give the inhomogeneous partial

differential equation(
∂2

∂t2
− v2A

∂2

∂z2

)
v1 = 2v2A

∂2v0
∂Z∂z

+ v2A
∂2

∂z2
(v0w0) +

η0
ρ0

∂2

∂t∂z

(
∂v30
∂z
− 2v0

∂w0

∂z

)
. (80)
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The v0 and w0 terms drive v1, and the solution for v1 will have a secular contribution (i.e. one or more terms that grow

relative to corresponding solutions of the homogeneous equation) if terms on the right hand side resonate with the

solution to the undriven wave equation. In the specific case where v0 is given by Eq. (70), secular terms in the solution

for v1 will restrict the domain for which v0 is a valid approximation if the right hand side of Eq. (80) contains eiφ or

e−iφ terms. The central idea in multiple scale analysis is to solve for the A(Z) that makes the resonance disappear,

making v0 a durable approximation for v.

Using Eqs. (70) and (74)–(76), eiφ terms vanish from the right hand side of Eq. (80) if and only if

1

A

dA

dZ
= −

k|||A|2

2

[
i

(
α+

1

1− β

)
+
k||η0

ρ0vA
(3− 4α)

]
. (81)

The same condition also removes the e−iφ terms.

Changing to polar form, Eq. (71) implies

1

A

dA

dZ
=

1

R

dR

dZ
+ i

dθ

dZ
. (82)

Hence, the real and imaginary parts of Eq. (81) yield the real ordinary differential equations

dR

dZ
= −κ1

2
R3, (83)

dθ

dZ
= κ2R

2, (84)

where

κ1 = k||

(
k||η0

ρ0vA
(3− 4αr)− αi

)
, (85)

κ2 = −
k||

2

(
αr +

1

1− β
−
k||η0

ρ0vA
4αi

)
. (86)

Eqs. (83) and (84) govern the local amplitude and phase drift of the Alfvén wave respectively (c.f. Eq. (72)).

Our main interest is in R(Z), which determines how the waves decay. Equation (83) is a separable first order

differential equation. The solution is

R(Z) =
R(0)√

1 + κ1R(0)2Z
. (87)

For κ1 > 0 the wave envelope decays non-exponentially, over a damping length that is inversely proportional to the

square of the initial wave amplitude. Having obtained R(Z), the solution for θ(Z) is obtained by directly integrating
Eq. (84). Using Eq. (87),

θ(Z) = θ(0) +
κ2
κ1

ln
∣∣1 + κ1R(0)2Z

∣∣ . (88)

5.2.4. Solution in original variables

Having ensured corrections to v ≈ v0 remain of order ε ∼ (b/B0)2 � 1, the multiple scale analysis is concluded by

using v0 as the approximation for v. Returning to the original variables,

Vx(z, t) =
a0√

1 + z/Ld
cos
(
k||(z − vAt) + (κ2/κ1) ln |1 + z/Ld|+ θ0

)
, (89)

where a0 is the amplitude of Vx(0, t), θ0 sets the initial phase of the wave (at z = 0, t = 0) and

Ld =
4

κ1(a0/vA)2
(90)

is the decay length. Using Eqs. (77), (78) and (85),

κ1 =
k||

3Re

(1− 3β)2

(1− β)2 + (64/9)(Re)−2
, (91)
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where Re is the Reynolds number for the wave, as defined by Eq. (26). Thus,

Ld =
12Re

k||(a0/vA)2
(1− β)2 + (64/9)(Re)−2

(1− 3β)2
. (92)

If one neglects the Re−2 term in the numerator of Eq. (92), then Ld agrees exactly with the formula in Eq. (41) that

we derived from energy principles. The formula for Ld in Eq. (92) is more general since it was derived without direct

assumptions about the value of Re = k||η0/ρ0vA, although the multiple scale analysis requires that the combination

of parameters k||, a
2
0 and Re are such that waves damp over a significantly longer scale than the wavelength.

5.3. Non-exponential decay and interpretation of damping length

As a general principle, the Alfvén wave energy density Ew = ρV 2
x decays more rapidly than the perturbation Vx, due

to the quadratic power. For exponential decay this is reflected in a factor two difference in the respective e−1 decay

lengths. For the non-exponential decay produced by nonlinear viscous damping, the situation is handled differently.

The same Ld describes Vx and Ew, however they have different functional forms. The velocity amplitude decays as

(1 + z/Ld)
−1/2 (see Eq. (89)), while the wave energy density decays as (1 + z/Ld)

−1. Therefore, over a distance Ld,

the velocity amplitude reduces by a factor
√

2 and the energy density halves.

5.4. Inclusion of thermal conduction

The multiple scale analysis can also be modified to include explicit thermal conduction. Since thermal conduction

is highly anisotropic, we include the parallel thermal conduction, setting the heat flow vector to

q = −K||(h · ∇T )h, (93)

where K|| is the coefficient of parallel thermal conduction, and temperature T = p/ρR where R is the gas constant.

The energy equation with heat flow is

∂p

∂t
+ V · ∇p+ γp∇ ·V = (γ − 1)(Qvisc −∇ · q), (94)

which replaces Eq. (67).

It follows that δp/p0 is related to vz/vA by the partial differential equation(
1 + Λ

∂

∂z

)
δp

p0
=

(
γ + Λ

∂

∂z

)
Vz
vA

+O(ε2). (95)

where

Λ =
(γ − 1)K||
ρ0RvA

(96)

is a conductive length scale. In the limit of weak thermal conduction, Λ → 0 gives δp/p0 = γVz/vA, recovering the

adiabatic case treated above. Similarly, for strong thermal conduction, Λ → ∞ gives δp/p0 = Vz/vA, recovering the

isothermal case.

Introducing a dimensionless pressure variable c defined by δp = εp0c(z, t), expanding c(z, t) = c0(z, Z, t)+εc1(z, Z, t)+

. . . and setting c0 = Ce2iφ + C∗e2iφ + ĉ0, terms in e0 in Eq. (95) yield ĉ0 = γŵ0, and terms in e2iφ yield C = ΓD,

where

Γ =
γ + 2ik||Λ

1 + 2ik||Λ
. (97)

Solving further, an equation D = αA2 analogous to Eq. (76) is obtained but with β replaced by the complex-valued

Γp0/ρ0v
2
A in the formula for α. Meanwhile, (75) and (81) are unchanged, retaining the real-valued β = γp0/ρ0v

2
A. The

wave amplitude is therefore governed by results identical to Eqs. (83) and (85), with the aforementioned change in the

definition of α.
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6. DISCUSSION

6.1. Optimum damping

Inspecting Eq. (92), the formula for Ldk|| has a minimum with respect to the Alfvénic Reynolds number at Re =

8/(3|1− β|). Thus, shear Alfvén waves with k|| = 3ρ0vA|1− β|/3η0 are damped in the fewest number of wavelengths,

which we refer to as optimum damping. The optimally damped waves have

Ld
λ||

=
32

π

|1− β|
(a0/vA)2(1− 3β)2

. (98)

When β � 1, the right hand side of Eq. (98) is approximately ten divided by the square of the normalised wave

amplitude. Hence, while nonlinear viscous damping can in principle damp Alfvén waves in a small number of wave-

lengths, this requires large amplitudes a/vA ∼ 1, or β ∼ 1. For a more typically encountered amplitudes a/vA ∼ 10−1

and low β, one finds Ld/λ|| & 1000, making nonlinear viscous damping negligible for many coronal situations.

6.2. Viscous self-organisation

The suppression of nonlinear viscous damping for small Re (highly viscous plasma) does not mean that viscous

effects are unimportant in this regime. On the contrary, nonlinear damping is suppressed for small Re because viscous

forces organise the parallel flow associated with the Alfvén wave to approach the relationship Vz/vA = (3/4)(Vx/vA)2.

This modification of the parallel flow plays a crucial role in avoiding significant nonlinear damping in highly viscous

plasma, when modelled using Braginskii MHD.

6.3. Validity constraints

Throughout this paper, we have assumed that β 6= 1 to avoid resonant wave coupling. This condition holds

throughout most of the corona, so it is appropriate for our primary applications. Additionally, the multiple scale

analysis in § 5 uses ε ∼ (Vx/vA)2 ∼ (b/B0)2 as a small parameter, one consequence of which is that the nonlinearly

damping occurs over a distance considerably greater than the parallel wavelength. As noted in § 3.2, transverse coronal

waves are observed in open-field regions with ε ∼ 10−2, making weakly nonlinear theory appropriate for such situations.

Obtaining nonlinear viscous solutions in the resonant and strongly nonlinear regimes nonetheless remain interesting

future challenges for plasma theory.

Applicability of this paper’s results to physical problems is also constrained to conditions under which Braginskii

MHD can be rigorously applied. As discussed in § 2, the traditional derivation of Braginskii MHD assumes that the

collisional mean free path is less than the macroscopic scales. Comparing the mean free path parallel to the magnetic

field to the parallel wavelength, this condition can be given as k||λmfp < 1, where λmfp = vTiτi, vTi =
√
kBT/mi and

τi is the ion collision time. Using the formula (Braginskii 1958, 1965; Hollweg 1985)

η0 = 0.96nkBTτi, (99)

and the definition of Re in Eq. (26), one can show that

k||λmfp < 1 ⇔ β1/2Re =
ρcs
k||η0

> 1. (100)

In other words, Braginskii MHD requires that the Reynolds number based on the sound speed is greater than unity. One

should therefore be cautious about applying small Alfvénic Reynolds number results such as viscous self-organisation

to real low-β plasmas.

6.4. Formulas for applications

For applications to real plasmas, the following formulas are convenient. In cases where the parallel viscosity coefficient

is determined by Coulomb collisions,

η0 = 0.96nkBTτi =
22

λC
× 10−17T 5/2, (101)

where this formula is stated in S.I. units with T in kelvin, and λC is the Coulomb logarithm (e.g. Hollweg 1985). The

Reynolds number defined in Eq. (26) can then be expressed as

Re = 5.8× 1020λCB
2f−1T−5/2, (102)
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also in S.I. units, where f = vAk||/2π is the wave frequency. This formula makes explicit the dependences on

frequency, magnetic field strength and temperature. The Alfvénic Reynolds number is smallest when the plasma has

high temperature and low magnetic field strength, and for higher frequency waves. Finally, we express the damping

length in Eq. (92) as a function of frequency and the mean square velocity
〈
V 2
x

〉
= a20/2, which gives

Ld =
3

π

v3ARe

f 〈V 2
x 〉

(1− β)2 + (64/9)(Re)−2

(1− 3β)2
. (103)

6.5. Waves in a coronal open-field region

Outgoing transverse waves in the magnetically open solar corona contain sufficient energy to heat the open corona and

accelerate the fast solar wind (McIntosh et al. 2011; Morton et al. 2015), and they are observed to damp significantly

within a solar radius above the Sun’s surface (Bemporad & Abbo 2012; Hahn et al. 2012; Hahn & Savin 2013; Hahn

et al. 2022). Heating at these altitudes is also thought to be important for producing the observed rapid acceleration of

the fast solar wind (Habbal et al. 1995; McKenzie et al. 1995). The problem of how the outgoing waves damp has not

been conclusively solved, although one leading hypothesis is turbulent cascade driven by interactions with downgoing

Alfvén waves (Hollweg 1986; Heyvaerts & Priest 1992; Matthaeus et al. 1999; Cranmer et al. 2007; Verdini et al. 2010;

Mikić et al. 2018) produced either by reflection from density inhomogeneities (van Ballegooijen & Asgari-Targhi 2016;

Pascoe et al. 2022) or by parametric decay instability (Galeev & Oraevskii 1963; Derby 1978; Goldstein 1978; Shoda

et al. 2019; Hahn et al. 2022).

Here, we demonstrate that Braginskii viscosity does not cause significant damping of Alfvén waves at the altitudes

at which the traditional derivation of Braginskii MHD holds. For concreteness, we consider the Sun’s northern polar

open-field region on 27 March 2012, using observational values reported by Morton et al. (2015). Enhanced wave

power was present around f = 5 mHz, which suggests Alfvénic waves produced by p-modes (Morton et al. 2019). We

will calculate damping lengths for this frequency, noting that Re and Ld depend on f , with Ld ∼ f−2 in the limit

of high Re. Morton et al. (2015) inferred that the Alfvén speed was nearly constant with vA = 400 km s−1 on their

domain of r = 1.05 to 1.20R�. For temperature, we set T = 1.6 × 106 K, the formation temperature of the Fe XIII

lines used by the CoMP instrument, which implies the proton thermal speed VTi =
√
kBT/mi is 115 km s−1. Hence,

in for an isothermal equation of state β = 0.083 and β1/2 = 0.29. For the wave velocity amplitude, Morton et al.

(2015) recommended that the reported non-thermal line width should be used, which varies with altitude.

Starting with lowest altitude observed by Morton et al. (2015), r = 1.05R�, we set n = 1014 m−3, B = 2× 10−4 T

and take the rms value of Vx as 35 km s−1. We therefore find λC = 19 and Re = 28. Since β1/2Re = 8 > 1, Braginksii

MHD applies and we evaluate Ld = 4.2× 108 km ≡ 600R�.

At r = 1.20, we set n = 1013 m−3, B = 6 × 10−5 T and take the rms value of Vx as 50 km s−1. The observed

parameters therefore give λC = 21 and Re = 2.7. Since β1/2Re = 0.8 ≈ 1, this altitude is close to the maximum at

which the assumptions by which Braginskii MHD is traditionally derived remains valid (for this particular open field

region, and assuming Eq. (101)). Evaluating the damping length here returns Ld = 4.2× 107 km ≡ 61R�.

We conclude that Braginskii viscosity does not cause significant wave damping below r = 1.2R�, which is consistent

with observational results that Alfvénic wave amplitudes in coronal holes follow ideal WKB scaling out to around this

altitude (Cranmer & van Ballegooijen 2005; Hahn & Savin 2013).

Between the altitudes we have examined, Ld reduces by an order of magnitude. If one were to extrapolate using high

Re or incompressible results, it would appear that viscous damping becomes important near the altitudes at which the

waves are observed to damp. We are cautious about making such an assertion for two reasons. First, as discussed in

§ 6.1, our results show that for Re < 8/(3|1−β)) the damping length in a Braginskii MHD model increases again as the

field-aligned flow self organises to supress viscous damping. Secondly, as the plasma becomes increasingly collisionless

(β1/2Re < 1) the traditional derivation of Bragniskii MHD falters.

Intriguingly, it may be significant that the onset of wave damping broadly coincides with the altitude at which

Braginskii MHD can no longer be confidently applied if one invokes the η0 expression for Coulomb collisions given in

Eq. (101). This correspondence is suggestive that the wave damping observed in coronal holes may involve collisionless

and heat flow effects not found in the most common fluid models.

6.6. Future work

The present types of analyses should be extended in future to other types of propagating transverse MHD waves.

The nonlinear longitudinal flow that accompanies propagating torsional Alfvén waves differs from its counterpart for
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propagating shear Alfvén waves (Vasheghani Farahani et al. 2011) and it will be of interest to investigate how this

difference affects the nonlinear viscous damping. It is similarly desirable to determine how nonlinear viscosity affects

propagating kink waves (Edwin & Roberts 1983).

For propagating shear Alfvén waves, viscous damping appears most promising near the cs = vA singularity, which

must be treated using different methods to those used in this paper. The solar wind frequently has β ∼ 1, while β = 1

occurs in the lower solar atmosphere and in the vicinity of coronal nulls points. Hence, this case is of considerable

physical interest. One challenge for application to magnetic nulls is that the magnetic field unit vector h = B/|B|
is not defined at the null itself, so one must be careful to evaluate the Braginskii stress tensor using appropriate

calculations, e.g. see recent discussion by MacTaggart et al. (2017).

A further challenge is to develop a theory of nonlinear viscous damping applicable to strongly nonlinear waves with

amplitudes b ∼ B0 and greater. The results of the multiple-scale analysis in § 5 are rigorous only for the weakly

nonlinear case, in which ε ∼ (b/B0)2 can be treated as a small parameter and it is assumed that the damping length is

significantly longer than the wavelength. Strongly nonlinear Alfvén waves with b ∼ B0 are a feature of the solar wind,

and while the low collisionality of the solar wind means that Braginskii MHD may not be an appropriate framework

for that application, extending the current work to strongly nonlinear waves remains an interesting problem.

There is a diverse collection of MHD wave problems beyond wave damping for which viscous effects are likely

to be significant. Prime among these are nonlinear phenomena involving Alfvén waves, for which the nonlinear

viscosity tensor enters the equations at the same order as the effect of interest. For example, standing Alfvén waves

drive significantly stronger field-aligned flows than occur for propagating waves because standing Alfvén waves create

inhomogeneous time-averaged magnetic pressure. There could also be significant value in investigating how viscosity

modifies wave interactions, including Alfvén wave collisions and parametric decay instability (Galeev & Oraevskii 1963;

Derby 1978; Goldstein 1978), which are central to leading hypotheses of wave heating in the magnetically open solar

corona.

Finally, we point to the continuing need for basic plasma physics research to provide increasingly rigorous derivation

and validation of the appropriate fluid equations for weakly collisional and collisionless plasma, in the face of the

closure problem summarised in § 2. As discussed in § 2 and 6.3, Braginskii MHD breaks down at higher altitudes

in the corona as the plasma becomes increasingly collisionless (see Eqs. (100) and (102)). The CGL double-adiabatic

equations and other models that evolve the stress tensor may provide a more suitable framework in these conditions.

Hunana et al. (2019a,b, 2022) provide recent discussions of such models and their limitations. Alternatively, it may

be necessary for the solar waves community to more widely adopt non-fluid plasma models. However, tractability of

kinetic models remains a limiting factor, especially in light of the large separations between kinetic and macroscopic

scales that are characteristic of the Sun’s corona. Eloquent comments on these matters can be found in Montgomery

(1996).

7. CONCLUSIONS

This paper has investigated the properties of propagating shear Alfvén waves subject to the nonlinear effects of the

Braginskii viscous stress tensor. The main points are as follows:

1. For many plasma environments, including the low-altitude solar corona, Braginskii MHD provides a more accurate

description of plasma than classical MHD does, by rigorously treating the stress tensor and thermal conduction.

Stress tensor effects nonetheless remain relatively unexplored for many solar MHD phenomena.

2. The dominant viscous effects for propagating shear Alfvén waves are nonlinear in the wave amplitude and occur

through the “parallel” viscosity coefficient, η0. Theoretical results based on linearizing the stress tensor with

respect to the wave amplitude are only valid for amplitudes satisfying (b/B0)2 � (Ωiτi)
−2. Such waves would

be energetically insignificant under normal coronal conditions, hence nonlinear treatment is required.

3. Compressibility and pressure affect the nonlinear field-aligned flow associated with shear Alfvén waves, hence

they impact nonlinear wave damping. Both must be included to produce accurate coronal results.

4. Braginskii viscosity damps propagating shear Alfvén waves nonlinearly, such that the primary wave fields b and

Vx decay as (1 + z/Ld)
−1/2, where the decay length

Ld =
12Re

k||(a0/vA)2
(1− β)2 + (64/9)(Re)−2

(1− 3β)2
.
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Here, a0 is the initial velocity amplitude of the wave, β = (cs/vA)2 and Re = ρvA/k||η0 is the Alfvénic Reynolds

number of the wave. The energy density decays as (1 + z/Ld)
−1.

5. Optimal damping (the minimum normalised damping length k||Ld) is obtained when Re = 8/(3|1− β|). For low

β plasma and (a0/vA) . 10−1, one finds Ld/λ|| & 1000, indicating that nonlinear viscous damping is negligible

for many coronal situations.

6. The asymptotic behaviour that Ld → ∞ in the highly viscous regime Re → 0 is attributed to self-organisation

of the parallel flow by viscous forces such that Vz/vA ≈ (3/4)(Vx/vA)2, which suppresses dissipation.

7. Applicability of the Braginskii MHD solutions to real plasmas is constrained by the traditional derivation of

Braginskii MHD assuming that k||λmfp < 1 which is equivalent to β1/2Re = ρcs/k||η0 > 1. In other words,

Braginskii MHD requires that the Reynolds number based on the sound speed is greater than unity. We therefore

recommend that only the damping results for large Alfvénic Reynolds number should be applied to real coronal

plasma, using the simplified formula Ld = 12Re(1 − β)2/(k||(a0/vA)2(1 − 3β)2)) that has been derived in this

paper by two different techniques: energy principles and multiple scale analysis.

8. Application to transverse waves observed in a polar open-field region concludes that nonlinear Braginskii viscosity

does not cause significant damping of the waves at the altitudes at which the assumptions by which Braginskii

MHD is traditionally derived remain valid (r . 1.2R� for the considered region and wave properties). Intrigu-

ingly, the observed onset of wave damping broadly coincides with the altitude at which Braginskii MHD can no

longer be confidently applied if one invokes the η0 expression for Coulomb collisions given in Eq. (101).
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